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Lhe advection upstream spliting mathod (AUSMY was teeently
developed by Liou and Steflfen for aceurate predictions of viscous
flows. The special merits of AUSM compared to other upwind
schemes are the low computational complexity and the low numeri-
cal diffusion. However, it is known that the original method also
has several deficiencies. It locally produces pressure oscillations in
the vicinity of shocks and in cases of adverse grid sitvations and
flow alignment. in this paper a hybrid flux vector splitting scheme
is proposed which switches from AUSM to van Leer at shock waves,
ensuring a sharp and clean resolution of strong shocks. In order 1o
achieve sufficient damping, a modified dissipative term is intro-
duced, which prevents the scheme from being undamped as the
Mach number approaches zero. Various modifications of the stan-
dard MUSCL implementations for second-order accuracy are pro-
posed, which yield an accurate resolution of viscous shear layers
without spurious oscillations. The ability of the improved flux vector
splitting scheme is demonstrated by the computation of two- and
three-dimensional viscous flows. © 1995 Academic Press, Inc.

1. INTRODUCTION

The prediction of the extreme flow conditions found in high-
speed flows requires accurate and robust nuwmerical nethods.
This has led to the development of the so-called upwind-hiased
discretization schemes, In contrast o central difference approxi-
mations these micthods use local wave propagation theory
produce accurate evalustions of fow propertics near discontinu-
ities and shear layers without the necessity ol added artificial
damping. However, in comparison with central discretization
these methods require higher computational effort.

In the past, several upwind schemes have been developed
and successfully used for the calculation of many inviscid
flow problems. Prominent representatives of this class of
algorithms are schemes based on the flux vector splitting
{e.z. |1, 2]y and flux difference splitting (e.g., |3, 4]) concepts.
Investigations have shown that when used for viscous flow
calculations most of these schemes turn out to be either
inaccurate or difficult to vse with respect to robustness and
parameter sensitivity. Classical llux vector splitling methods
are simple and very robust upwind techmques but they
exaggerate diffusive effects which take place in shear and
boundary layers. On the other hand, schemes based on flux
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differcnce splitting arc very accurate for viscous calculations,
bat at 1he cost of increased compulitional expense. Marcover,
they lack robustness Tor lows with strong expansions into
regions of low pressure and low density.

Consequently, substantial effort has been put on the develop-
ment of modified or new upwind methods (e.g., [S-7]) with the
primary goal of maximizing both accuracy and compulational
efficiency. A remarkably simple upwind flux vector splitting
scheme has been introduced by Liou and Steffen [6, 8]. It
treats the convective and pressure terms of the flux function
separately. The convective quantities are upwind-biased extrap-
olated to the cell interface using a properly defined cell lace
advection Mach number. Accordingly, the scheme is called
advection upstream splitting method (AUSM). Resulis for sim-
ple flow problems given by Liou [6, 8] have shown that AUSM
retains the robustness and efficiency of the flux vector splitting
schemes but it achieves the high accuracy attributed to schemes
based on the flux difference splitting concept. The computa-
tional effort for the flux evaluation is only linearly proportional
to the number of unknowns, as in the case of central differenc-
ing. Furthermore, the schene can be easily extended to real gas
caleulations, The application to various relevant flow problems,
however, has shown [9—10] that the original flux vector splitting
method of Liou and Steffen has several deficiencies. Ut locally
produces pressure oscillations in the vicinity of shocks. Further-
more, the scheme has a poor damping behavior for low Mach
numbers which leads to spurious oscillations in the solution
and affects the ability of the scheme to capture flows aligned
with the coordinate grids.

In the present paper several modifications to the original
advection upstream splitting method of Liou and Steffen are
proposed which substantially improve the scheme’s ability to
predict viscous flows accurately. In particular, a hybrid method
is introduced which switches from AUSM to the van Leer
scheme at shock waves. This ensures the well-known sharp
and clean shock capturing capability of the van Leer scheme
and the high resolution of slip lines and contact discontinuities
through AUSM. An adaptive dissipation is introduced in order
to achieve sufficient numerical damping in cases of adverse
grid situations and flow alignment. Furthermore, the MUSCL
implementation for higher order accuracy is modified to allow
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a more accurate scaling of the numerical dissipation in boundary
layers where the contravariant Mach number is usually small
in the wall-normal direction. The improved accuracy of the
modified scheme is demonstrated by the calculation of two-
and three-dimensional inviscid and viscous flows.

2. GOVERNING EQUATIONS

The integral form of the three-dimensional mass-averaged
Navier-Stokes equations using nondimensional variables in a
cartesian coordinate system can be written as

if de+f Fonds=0, (1)
atty av

where

W = [p. pu, pv, pw, pE]"

is the vector of conserved quantities with p, u, v, w, and E,

cific total energy, respectively. V denotes an arbitrary control

olume fixed in time and space with boundary 4V and the outer

normal n. The total enthalpy is given by

H=FE+plp. (2)

The flux tensor F “may be divided into its inviscid part F
and its viscous part F¥ as

F=F—-F (3)
with
[ puk, + puvk, + pwk, ]
(pu* + p)k,  + puvk, + puwk,
Fl = | (puvk, + (pu? + pik, + puwk,
(puw)k, + puwk, + (pw? + pik,
L(puE +up)k, + (pvE +vplk, + {(pwE + wplk,

denoting the density, cartesian velocity components, and spe-  and
i 0 1
oK, + ok, + ok,
= ok, + ok, + ok, ,
ok, + .k, + .k,
L (wog + voy, +wo, — gok, ot (uo, T vy, +woy, — g0k T+ oy, ooy + wog — qz)kzj

where k,. K,. k, denote the cartesian coordinate directions.
Assuming that air behaves as a calorically perfect gas, the
pressure is calculated by the equation of state
L w4 w?
P_(Y_Uﬂ(fi'—z— ; 4}
where 'y denotes the ratio of specific heats. The temperature T
is given by

T = plp. (5)

The elements of the shear—stress tensor and the heat—flux
vector are given by the equations for Newtonian fluid

T = 2utt; — 23ulu, + v, + w)
Ty = 200, — 230, + vy T w))
a, = 2uw, — 23, + v, + w)
Ty = Gy = plu, + v))
O, = 0, = plu, Twy)

(6)

0-,\‘: = Oy = lu'(vz - w}‘)
aT ar aT
= -KE g KT, g =K.
4 x4 ay: e

For laminar flow the nondimensional viscosity u is assumed
to follow the Sutherland law

m=

Y, { T\ T. + 110k
= (7

Re. \T./ T+ 110k
with M., Re.., and T denoting the free stream Mach number,

Reynolds number, and the dimensional temperature, respec-
tively. The heat conductivity K is given by

(8)

with Pr being the Prandtl number.

For turbulent flows, the laminar viscosity @ in Eqg. (7) is
replaced by @ + &, and w/Pr in Eq. (8) is replaced by
wf/Pr + u,/Pr,, where the eddy viscosity u, and the turbulent
Prandtl Pr, number are provided by a turbulence model. For
the transonic airfoil calculations presented in this paper the
algebraic turbulence model of Baldwin and Lomax [11]
15 used.

For hypersonic flow calculations it is assumed that air be-
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haves as air reacting in thermochemical equilibrium. 1n this
case a modified ratio of specific heats is used. Furthermore,
the speed of sound is given by

)
dap

LB

pde ’ @)

p=const

e=const

where ¢ is the internal energy per unit mass. For the calculation
of the effective ratio of specific heats and for the partial deriva-
tives of pressure in Eq. (9), piecewise analytically defined func-
tions [12] are used. These functions relate the pressure to both
the density and specific internal energy and take into account
the exitation of vibration and the dissociation of O, and N,
molecules. The ternperature, viscosity, and heat conductivity
are similarly computed.

3. SOLUTION METHOD

3.1. First-Order Spatial Discretization

The numerical method is based on a finite volume discretiza-
tion. The approximation of the governing equations (1} follows
the method of lines which decouples the discretization in space
and time. The generation of a body-fitted grid around the aero-
dynamic body under investigation divides the physical domain
into hexahedral cells. The discrete values of the low quantities
are located at the vertices of the mesh cells. For the flux calcula-
tion an auxiliary grid is used which is defined by connecting
the cell centers of the original mesh. The approximation of the
integral equation (1) for a hexahedral control volume sur-
rounding the grid node (4, j, k) yields a system of ordinary
differential equations with respect to time,

¢
Vi,j,k ’ E wi,j,k = _R:,j.k-

(10)
R;;; represents the net flux (residuum) of mass, momentuim,
and energy over the control volume (J, j, k) with volume V, ;.
It is calculated as

Rijp = Rivioge — Ricinge + Rijrine T
- Ri,j—l.'z,k + Ri}j,k-{—lil - Ri,j,k—}/z, (11
with

Ri+l.’2.j.k = R;’*]!Z,j,k - R:{HIZJ,J(, (12)
where R/, 5, and R,—"H,.z_j'k denote the inviscid and viscous flux
through cell face i + 1/2.

In the following the improved flux vector splitting scheme
is described. Here, only the approximation of the convective
flux is discussed. Viscous fluxes are taken into account only
in the coordinate direction normal to the body surface (thin

layer approximation of the Navier—Stokes equations). As usual,
they are discretized with central differences. Details of the
viscous flux approximation are given in {13].

As shown in [6], the discrete inviscid flux calculated by
AUSM can be interpreted as a sum of a Mach number weighted
average of the left (L) and right (R) state at the cell face { +
% between points (7, j, k) and (i + 1, f, k) and a scalar dissipative
term. It reads

" pc ] [’ pc ]
pcu pcl
1
R;‘+|f2,j‘k = |S|i+1!2,j‘k EMHUEJ,J( pcy + pcy
pew pcw
| peH JL | pcH R
i3
[ C ] ™ pc ] 0 (13)
pcu pcu 5P
1 .
- 5 q’iﬂ/z.,n.k pey l Kald + | 5P 12,40k
pew pew 5P
peH [*  {peH|M[ Lo
where
Sf+11‘2‘j.k = [s,, Sy Sz]zTﬂfzJ:k (14)

denotes the surface vector normal to the cell face i + 3. The
quantity ¢ represents the speed of sound. M, denotes the
advection Mach number at the cell face i + 3 which is calculated
according to [6] as

MiH.'Z,j,k =Mj + Mg, (15)

where the split Mach numbers M”™ are defined following van
Leer [2]:

M, FM=1,
Me=|iM+ 17 ifM| <1,
| 0. if M= —1:
(16)
[0, if M= 1,
M~ =| —3M— 1, ifMl<1,
M, if M= —1.

M, and M;, denote the Mach number associated with the left
and right state, respectively. The advection Mach number is
given by
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I {5+ s,0 + 5w
=i (o + 50 + s.w) (an

S| c
The pressure p at cell face i + 3 is calculated in a similar way
P = PLt PR, (18)

where p”" denote the split pressure defined according to 2]

—p, if M=1,
pr=[ip(M+ 12 -M), ifM|<1,

0, it M= —1;

- (19)

0, if M=z 1,
p=|ipM — M2+ M), if M| <1,

D, if M= —1.

The definition of the dissipative term & determines the particu-
lar formulation of the convective fluxes. A hybrid scheme is
proposed here, which combines the van Leer scheme and the
scheme of Liou and Steffen (AUSM). It reads

‘.biﬂfz.j,k =1 - w): ‘l"?}uz.j.k t - ¢.‘"+°i’f33iM (20)
with
D
|I\’Ii+l.'2,j.k‘a if IMHI.‘Z,j,kl =1,
1
Mia T Mg — 1Y, ifO= M0, <1,
| +112,,,k| 2( R ) 12,7k 21)
1 )
!M.‘Hn.j.kl + 3 M+ 1), if-1< M;+%._.‘,k— ={;
M 12,04 if Iy ] > s,
modAUSM — P
BB = | (Mo, + 8 L@
+142,)k ( +}.'2;J; . lf IMH”ZLA = 6,

where &is a small parameter, 0 << 8= (0.5, and @ is a constant,
0=w=1l

The above equations clearty show that for a supersonic cell
face Mach number the hybrid scheme represents a pure upwind
discretization, using either the left or right state for the convec-
tive and pressure terms, depending on the sign of the Mach
number. For @ = 0 the methed reduces to the classical van
Leer flux vector splitting scheme. In the case of @ = | and
& = 0 the original AUSM developed by Liou and Steffen is
recovered. Comparing both fluxes it is obvious that the van
Leer scheme is more dissipative than AUSM (8 = 0). It has

1.00
'c'lE'.) —8—— vanleer
o —&— orig. AUSM
>
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FIG. 1. Dissipation coefficient for Mach number close to zero.

an additional Mach number scaled dissipative term which does
not vanish even for M = 0. Consequently, the van Leer scheme
is more robust but less accurate than the original scheme of
Liou and Steffen, especially for viscous flow calculations. It is
interesting to note that the Mach number scaled dissipation of
the advected flux fulfills the requirements for preconditioning
the discrete flow equations given by Turkel [14]. Turkel pro-
poses that the numerical dissipation should scale according to
the eigenvalues of the preconditioned differential form of the
flow equation, i.e., the convective wave speeds. Both the dissi-
pation inherent in the split pressure, Eq. (19) and the advected
part of the flux vector, Eq. (22) with & = 0, vanish as the
contravariant velocity component goes to zero. In contrast, van
Leer’s dissipation scale, @Y\, is 0.5 for M — (. Hence, van
Leer’s dissipation scales with the acoustic wave speed for low
Mach numbers where the speed of sound is approximately
constant. This behavior is responsible for the failure of precon-
ditioning, in combination with Van Leer’s flux vector splitting
as observed in [15].

The hybrid flux has been introduced in order to ensure both
the clean and sharp shock resolution of the van Leer scheme
and the low diffusive solution of the AUSM in smooth regions.
This is realized by relating the parameter w to the second
difference of the pressure,

w = max (¥ ;¥4 0,

Pivjk ™ 2pi"j.k + P
Pimije + 2P+ P

,o), a = 0(3).
(23)

Vijxk — max(l - a’

The value of w is 1 in smooth regions and switches to O in the
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RAE2822 airfoil

[Mach number independent limiter]

[Mach number dependent limiter]

d ariginal improved

FIG. 2. Flow solution for RAE 2822 airfoil, M. = 0.73, & = 2.79°. Re = 6.5 X 10% (a) Pressure contours for original and improved AUSM; (b}

Mach contours.

vicinity of shocks. Moreover, in order to improve the damping
behavior of the original AUSM (& = 0) in regions with adverse
grid and flow alignment situations, its dissipative term has been
modified. As it can be seen in Eq. (22), controlled dissipation
is locally introduced for small advection Mach numbers, pre-
venting the dissipative term from approaching zero as the Mach
number tends to zero. In Fig. 1 the dissipative term ¢ is plotted
as a function of the Mach number. Note, that for simplicity
M, ~ Mg is assumed, which is valid at least in the vicinity of
M = 0 on a sufficiently fine computational grid.

3.2. Scaling of the Adaptive Dissipation for Viscous Flows

Accurate and efficient calculations of viscous flows require
computational grids with high-aspect ratio cells. Therefore, the
dissipation term of the improved AUSM for small advection
Mach numbers (Eq. (20)) has to be properly scaled in order to
avoid smearing of the shear ayers in the wall-normal direction,
This is realized by defining the parameter & in Eq. (22), not as
a constant, but as a function of the wave speeds in the individual
coordinate directions,

Oviinge = 0 Binipjk (24}

where & is a small constant, 0 = & = 0.5, and 3 is a scaling
function.
One possibility for the scaling of the adaptive dissipation is

Al A
Birinjx = min{max[%a H]’ 1},

where A;, A;, A; are the spectral radii of the inviscid flux

{25)

Jacobians in the i-, j-, k-coordinate directions, respectively. The
quantity A; is defined as

A =q-S,+ ]S4, (26)
where q = [u, v, w]T is the vector of cartesian velocities and
c is the speed of sound, and |S,| represents the surface area
associated with the i-direction of the body-fitted coordinate
system. The quantities A, A, are given accordingly. The scaling
functions 8 in the j- and k-directions are defined io a similar
way. With this scaling, controlled adaptive dissipation can be
introduced, which on the one hand improves the damping be-
havior of AUSM in adverse grid situations, but on the other
hand does not degrade the accuracy of the method for grid-
aligned shear layers. Additional dissipation as a function of the
grid aspect ratio is fed in only along the long stdes of the cell,
that is, if the cell face area |S,| is smaller than the areas S|
and |8]. On the contrary, if the cell face area |S) is larger than
areas |S,| and [Sk|, as is typical in the wall-normal direction,
the original nonsmearing dissipation of the AUSM is recovered.

3.3. High-Order Scheme

The spatial accuracy of the improved flux vector split scheme
depends on the determination of the left and right states at the
cell interfaces. For a first-order scheme the flow quantities at
the left and right states are given by their values at the neigh-
boring mesh points, i.e, i, j, k and i + 1, j, k. respectively.
Higher order accuracy is obtained with the MUSCL approach
in the present work. MUSCL uses extrapolation of flow quanti-
ties for the calculation of the lefi and right states. With this
approach several decisions must be taken which affect the
ability of the scheme to capture strong shocks and viscous shear
layers aligned with the coordinate grids. These are the choice
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FIG. 3. Grid around blunt slender cone with spherical nose shape.

of the flow variables to be extrapolated to the cell face and the
choice of the extrapolation function which gives higher order
fiuxes in smooth regions of the flow. At discontinuities the
function switches to first-order accuracy in order to guarantee
shock capturing without spurious oscillation. Here, the van
Albada limiter function is chosen according to [16]

1 (A + ) A+ (AL + 8) A, 27
= .., -
Iy, ik 2 A?G- + AZ_ - 28 (
with
Ap = Moy jp — Wi
A=ty — s

where 1 denotes the flow quantity u to be extrapolated to the
face i + 4. The right state, ug, is evaluated similarly by using
the data of points (i, j, k), (i -+ 1,j, k), (i + 2, j, k). This limiter
function is equivalent to Fromm’s scheme in smoath regions
of the flow where the gradients squared, A%, A%, are small
compared to &. In [16] the quantity & is used in order to suppress

limiting of the solution in regions where the flow is near con-
stant. This is accomplished by taking

£ = K Ax" (28)
where Ax denotes the distance between the grid points (i, j, &)
and (i + 1, j, k). x; is an empirical constant of ((10) and 2 <
n <t 3. Note that one can only expect Eq. (28) to work well
when solving the flow equations i their nondimensional form.
Equation (28) can be extended to suppress limiting the fiuxes
within boundary layers. Not only does limiting in the wall-
normal direction degrade accuracy on coarse meshes but it may
also introduce spurious oscillations in the solution as seen in
Fig. 2a. Here, we encounter the situation that the cartesian
velocity components, 1 and v, are nonzero but the contravariant
velocity component in the wall-normal direction is close o
zero. Limiting the extrapolation of & and v individually, as is
standard practice in most MUSCL implementations [17], may
result in false values for My and My which define the inherent

dissipation of the split flux (13). This problem is resclved
by defining

& = max[(x; Ax"), r PERUH — M), (29)

FIG. 4. Mach contours and pressure contours for blunt cone, M, = 8
a =P

’
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FIG. 5. Entropy value atong the body, blunt cone at M., = 8, « = (°,

where x, = 0(100), d™AUM g evaluated according to Eqg.
(22) with § = O (0.1), and M is the average of the
contravariant Mach numbers at points (7, j, &) and ({ + 1,
J. k). Figure 2a demonstrates that oscillations in the wall-
normal direction are completely removed by using Eg. (29),
instead of (28). Note that this type of oscillation does not
occur in the higher order results published in [6]. This may
be explained by the fact that the viscous test cases sclected
by 16] used cartesian meshes, where the cartesian velocity
v is equal to the corresponding contravariant velocity compo-
nent. For this special case Eq. (28) is sufficient in order to
obtain proper dissipative terms.

It should also be mentioned that the second-order interpolant
in Eq. (27) may be replaced by the third-order formula of
[18]. This alternative yields somewhat more accurate resuits

il %mm il

......

FIG. 6. Coordinate mesh for RAE 2822 airfoil with 320 X 64 cells.

log}|dp /dt ||,
[ Il
=

20} N
-40
0T aw

multigrid cycles

FIG. 7. Convergence history for AUSM, RAE 2822 airfoil, M, = 0.73,
a = 2.79°, Re = 6.5 X I0%

for transonic and supersonic flows, but it is less robust for
hypersonic flows with strong shocks.

The selection of flow variables for the extrapolation process
is described next. Initially, we tried some standard choices;
these are the use of primitive or conserved flow variables for
extrapolation, It turned out that the latter choice is not robust
at transient shock waves, whereas the former tends to support
oscillations in stagnation point regions behind strong shocks.
Furthermore, either choice does not allow inviscid steady-state
solutions with constant total enthalpy.

Constant total enthalpy in the steady state can be obtained
if the energy flux in Eq. (13) is formed with total enthalpy H
being an extrapolated quantity. However, recalculation of the
pressure p in Bq. (13) from a single set of flow variables
including A does not yield nonoscillatory fluxes for the momen-
turn equation. Further numerical experiments showed that ex-
trapolation of the primitives for mass and momentum fluxes,
combined with extrapolation of H in order to compute the
energy flux, results in nonoscillatory flow solutions and superior
convergence behavior. This numerical tratment corresponds
closely to the underlying design principle of the AUSM, which
splits the flux vector into an advective part and a pressure part.
We note that the present treatment of extrapolation for the
energy equation is similar to current practice in central differ-
ence schemes [19].

In the computations of 3D hypersonic flow problems pre-
sented here, very strong shocks occurred in regions of strong
variations of the gnd metrics. For these cases shock resolotion
is further improved by modifying the limiter function, Eq.
(27}, as

1 (A + 8YA_ + (A2 + &)A,

My =M T o vy
R AL+ A2+ 2¢

(30)

.with pressure switch v given by Eq. (23). Additionally, the

contravariant Mach numbers, M, and Mg are obtained by extrap-
olation of the contravariant velocity component. More specifi-
cally, M, at cell face i + % is computed by taking

— (QR)L
<1 ’

M. (31)
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FIG.8. Distributions of skin friction along RAE 2822 airfoil, M., = 0.73, ¢ =

where (g,), is the contravariant velocity which is evaluated
with the help of Eq. (30) and
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and ¢, denotes the speed of sound associated with the left state.
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2.79°, Re = 6.5 X 10% (a) van Leer flux vector splitting; (b} improved AUSM.

3.4. Time Integration

The spatial discretization results in a system of ordinary
differential equations with respect to time. For the inviscid
blunt cone calculation the solution has been advanced in time
employing an explicit five-stage scheme. Local time stepping
and implicit residual damping have been applied to accelerate
the convergence to the steady state. Furthermore, a space
marching technique has been used which considerably reduces
the overall computational expense [20]. The viscous flow prob-
lems were computed using multigrid techniques coupled with
cither explicit multistage time stepping [13] or the implicit
LU-8SOR scheme [21].

32064 a 0.0250 b
0.85 160432 ;?: "&’f&“m
C|_ cdp r —CO— vanleer
2.0200 |
080}
00175 F 8014
0.0150 |
320:64
075 by ; - 0.0125 | ‘ .
0 0.0005 1/N 0.0010 0 00005 4y 0-00t0
0.0060  320:64 C
Cy | 8016
0.0040
00036 | T Mrewas
—C— van Leer
0.0020 * : '
0 0.0005 1/N 0.0010

FIG. 9. Grid convergence of force coefficients for RAE 2822 airfoil, M. = 0.73, @ = 2.79°, Re = 6.5 X 10% (a) lift coefficient; {b) pressure drag; (c)

friction drag.
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grid: 128x60 cells
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FIG. 10, Grid for 20° compression ramp.

4. NUMERICAL RESULTS

In the following, numerical results for inviscid and viscous
flows obtained with the improved advection upstream splitting
method are presented. Emphasis is put on the method’s capabil-
ity to resolve the wall-normal gradients of flow quantities
which, for instance, occur in entropy and boundary layers. As
test cases the inviscid flow around a blunt slender cone and
viscous 2D and 3D flows are selected.

4.1, Inviscid Flow around a Blunt Cone

Inviscid calculations around a blunt slender cone [22] at
freestream Mach number M.. = 8 and angle of attack o = 0°
have been carried out. The curved bow shock detached from
the blunt nose produces a thick entropy layer in the front part
of the configuration which, however, develops to a very thin
layer in the rear part. Since the quality of the numerical results
strongly depends on the resolution of the entropy layer, compu-

0.075 | TVD scheme
Y AM=0.4
0.050 |-
0.025 |
0.000 = =————
0D0OC 0025 0.050 0075 y 0.100 0925 0350 0.975  0.200

0.075 | mod. AUSM scheme

0.050 -

0.025

0.000

0.000

0025

0.050 0.075 y» 0100 01425 ©.150 0175  0.200

FIG.11. Mach contours for 20° compression ramp, M. = 10, Re, = 18119.

tational methods have to be used which accurately predict this
flow feature.

The grid used for the calculations is shown in Fig. 3. The
C-O topology has been chosen with 161 X 41 X 31 grid points
in i-, j-, k-directions, respectively; 21 grid points were used to
discretize the spherical nose shape in streamwise direction. In
i- and j-directions a linear stretching of the grid spacing was
introduced. This allows a suitable gnd distribution with respect
to computational efficiency. The stretching in j-direction pro-
vides grid points in the near-wall region in order to resolve the
thin entropy layer in the rear part of the configuration.

Figure 4 shows Mach number and pressure contours in the
nose region obtained with the improved flux splitting method.
The flow field is axi-symmetric since the angle of attack has
been set to zero. In order to check the accuracy of the scheme;
in Fig. 5 the entropy value at the wall is plotted along the
body in streamwise direction. Since for inviscid flows the body
surface is part of the stagnation streamline, the entropy is con-
stant along the body. Its value is determined through the entropy
rise across the normal shock. In Fig. 5 numerical results ob-
tained with the improved AUSM and with the classical van
Leer scheme are depicted. In addition, the analytical entropy
value at the wall is given. In the front part of the configuration
{almost up to 100 nose radii) the error of AUSM is less than
1%. In the rear part, however, the accuracy is decreasing. This
may be attributed to the computational grid, which in this part
of the configuration 1s not sufficiently fine to resolve the thin
entropy layer as accurately as in the front part. It should be
noted that § = 0.1 has been used to control the dissipative
term. Computations with different parameters for § did not
improve the results. As can be seen in Fig. 5, the classical van
Leer scheme produces less accurate results along the whole
configuration. This demonstrates that on a given grid the im-
proved flux splitting method is less diffusive compared to the
van Leer scheme and, therefore, it is better qualified for the
accurate resolution of entropy layers.

4.2, Viscous 2D Flows

Two-dimensional viscous flow problems serve to demon-
strate the ability of the new flux vector split scheme to resolve
viscous shear layers. We have chosen transonic and hypersonic
test cases which are well known from literature.

The first test case is the transonic turbulent flow over the
RAE 2822 airfoil. The onflow conditions correspond to CASE
9 of [23]. The computational grid consists of 320 X 64 cells.
Grid points are clustered around the leading edge and trailing
edge, as well as in the shock region at the upper surface;
see Fig. 6. Flow computations were carried out with explicit
multistage time stepping and multigrid with full coarsening. A
typical convergence history is displayed in Fig. 7. Computing
time was reduced by a full multigrid; that is, coarse-mesh
solutions on grids with 80 X 16 cells and 160 X 32 cells were
obtained with each 100 multigrid iterations in order to produce



ACCURATE FLUX VECTOR SPLITTING

75

0.300 (- 0.025
0.250 |- 0.02¢ |-
C, ¢
o200k 0 _____ mod. AUSM scheme 0015 |-
— TVD scheme
0.150 0010t
0.100 0.005 |-
NS mod. AUSM scheme
—— TVD scheme
0.050 0.000 |-
0 000 N 13 Il L - 1 L L n n h] . L] 1 1
a oo 0.05 0.10 0.5 Q.20 b oo D.05 0.10 015 0.20
10"
St
_____ mod. AUSM scheme
— TvDscheme
107 |
10-3 n N 1 i L |
C oooo 0.050 0.100 0.150 0.200
FIG. 12. Flow solusion for 20° compression ramp, M* = 10, Re, = 1811%; (a) pressure coefficient; (b) skin friction coefficient; (¢) Stanton number.

the initial solution on the next finer grid. An impression of the
overall flow ficld is provided by Fig. 2b. The improved AUSM
yields a clean resolution of the shock and the boundary layers.
Figure 8 compares the distributions of skin friction yielded by
the AUSM and van Leer schemes under grid refinement. There
is a dramatic improvement of resolution visible for the improved
AUSM. Not only does the improved resolution of shear layers
affect the friction drag of the airfoil, but also the pressure forces,
due to viscous/inviscid interaction. This is demonstrated in Fig.
9, where lift and drag values are plotted as a function of the
inverse of the total number of cells, N. The results of an alterna-
tive high resolution scheme based on flux difference splitting
{24, 25] are included for comparison. The smeared boundary
layers of van Leer’s scheme affect the interaction with the
shock in that the shock location moves upstream {not shown
here). Consequently, lift is underpredicted by van Leer’s
scheme as compared to the AUSM and upwind TVD. The

improved AUSM is best for the prediction of pressure drag,
whereas the AUSM and upwind TVD do similarly well for
skin friction drag.

The next test case presented is the hypersonic laminar flow
past a 20° compression ramp. The onflow conditions correspond
to the case 1.2 of the Workshop on Hypersonic Flows for
Reentry Problems, Antibes, 1991 {26]. These computations
were carried out with the implicit LU-SSOR scheme and
multigrid [21]. Note that some reference computations with
explicit time stepping yielded the same steady-state solutions.
An interpolated coarse mesh result served as initial solution
for the computations. The computational grid plotted in Fig.
10 consists of 128 X 80 cells. The onflow conditions are
M. =10,Re, = 18119, T. = 52 K, and T../T.. = 5.57 (constant
wall temperature). Figure 11 shows the computed Mach con-
tours. Results obtained with the upwind TVD scheme [24, 25]
and the modified AUSM with the parameter § = 0.05 are
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FIG. 15. Discretized HERMES reentry vehicle with 72 X 48 X 32 cells,
surface grid, plane of symmetry, and outflow grid plane.

shown. The pressure coefficient, the skin friction coefficient, vergence behavior which is independent of the parameter &.
and the Stanton number along the wall are displayed in Figs. There is no influence of the dissipation parameter § on the skin
12a—c. No major differences can be observed between the friction (not shown here). In Figs. 14a~b a comparison of the
schemes. Only in the skin friction plot there is a noteworthy  first- and second-order results obtained with the TVD scheme
deviation in the last 10% of the configuration. Here the im- and the improved AUSM with § = 0.05 is presented. For both
proved AUSM predicts a smaller skin friction value. Note that schemes the asymptotic convergence behavior (Fig. 14a) is
the results agree very well with the grid-converged solutions  worse for the second-order calculation compared to the first-
published in {25]. Figure 13 presents a comparison of the con-  order one. It is interesting to note, that also in the first-order
vergence histories between the TVD scheme and the improved mode, without any extrapolation procedures for second-order
AUSM, The fastest convergence is obtained with the TVD accuracy and without any limiter functions, the flux ditference
scheme. The modified AUSM shows a slower asymptotic con-  split scheme shows a better convergence rate than the modified
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FIG. 14. Effect of spatial discretization schemes on convergence and accuracy of solution for 20° compression ramp, M., = 10, Re. = 18119: (a) convergence

history; (b) skin friction coefficient.
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FIG. 16. Computed flow field around HERMES reentry vehicle at M., = 25, & = 30°, H = 75 km for air in thermochemical equilibrium: (a) pressure
contours in plane of symmetry near the nose; (b) surface streamlines and Mach contours in outflow plane.

AUSM. This indicates better damping properties of the flux
difference splitting. One may recall that the AUSM scales the
dissipation with the local Mach numbers in contravariant direc-
tions, whereas the flux difference split approach scales the
dissipation with the individual speed of the acoustic and convec-
tive waves [3]. Comparison of the skin friction along the wall
(Fig. 14b) illustrates the difference between the first- and the
second-order results. Both schemes show the same behavior.

4.3. Three-Dimensional Hypersonic Viscous Flow

The final numerical test case is the 3D viscous flow over the
reentry vehicle HERMES. This case will demonstrate that the
present discretization method is useful for 3D flows around
complex geometries inciuding strong shocks and strong flow
expansions into leeside flow regions. Figure 15 displays the
surface grid of the configuration and some selected planes of
the field grid. Here, every second grid point was plotted for
clarity. The complete 3D grid wraps around the vehicle with
a C-O topology and contains 145 X 97 surface points and 65
points in the wall-normal direction. Note that a polar singularity
forms at the nose of the vehicle.

Freestream flow conditions were chosen as M. = 25 and
¢ = 30°. For this case, air was assumed to be in thermochemi-
cal equilibrium, and the freestream values of density and
internal energy correspond to an altitude of 75 km. A
converged flow solution for the complete flow field took
about 300 iterations of the multigrid algorithm with explicit
multistage time stepping. Figure 16a displays the captured
bow shock in the nose region of the vehicle. Figure 16b
shows the wall stream lines and Mach number contours in
the outflow plane. At these flow conditions the bow shock
is very close to the vehicle. High-pressure flow occurs along
the lower windward surface of the configuration and produces

almost all of the lift. A strong flow expansion takes place
around the leading edges of the wing and the winglet into
the leeside with low pressure and density. Note, that this
flow situation could not be computed with the upwind TVD
scheme, presumably, because this scheme does not preserve
the total enthalpy in the steady state. Grid refinement investiga-
tions (not shown here) indicate that the numerical errors of
the predicted heat transfer distributions are smaller than 10%.
Since then, the improved AUSM was successfully applied to
other complex hypersenic flow problems, including deflected
control surfaces [27] and multiblock computations of the
flow through the slot between different control surfaces [28].

5. CONCLUSIONS

A new flux vector splitting scheme has been investigated
for accurate and efficient prediction of hypersonic flows. This
scheme is based on the advection upstream splitting method
(AUSM) recently developed by Liou and Steffen. It is character-
ized by its low numerical diffusion and its low computa-
tional costs.

AUSM in its original form produces pressure oscillations
near swwong shocks and in adverse grid situations. In order
to improve the shock resolution capability and the damping
behavior of AUSM, a hybrid method is proposed which
switches from the AUSM flux to the classical van Leer flux at
shock waves, thus ensuring a clean and sharp shock resolution.
Furthermore, an adaptive dissipative term is introduced which
prevents the scheme to be undamped as the cell tace Mach
number approaches zero. This provides sufficient numerical
damping in cases of adverse grid situation and flow alignment.
The hybrid flux vector split scheme is cast in a form which
characterizes its behavior at low Mach numbers very well.
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The improved AUSM is investigated with respect to the
computation of entropy and boundary layers. In order to avoid
numerical smearing, scaling functions are introduced, which
propetly scale the adaptive dissipative term on computational
grids with high aspect ratio cells necessary for efficient resolu-
tion of entropy and boundary layers. The calculation of the axi-
symmetric inviscid flow around a blunt slender cone shows
that the modified AUSM with proper scaling of the dissipative
term is capable of accurate entropy layer predictions. Further-
more, the calculations for 22 airfoils and 2D ramp flows demon-
strate that the proposed method predicts viscous flows as accu-
rate as the TVD flux difference splitting scheme. Compared to
the TVD scheme the convergence behavior of the modified
AUSM scheme is slightly worse. However, due to the reduced
computational effort per time step, the overall efficiency of
both methods is comparable. Since in contrast to the TVD
scheme the numerical effort of AUSM is proportional to the
number of unknowns, relative reduction of the computational
cost is obtained for 3D} calculations and also for solutions of
flow problems with additional conservation equations. Compu-
tations of a complex 3D viscous flow over a winged reentry
vehicle demonstrate the usefulness of the present discretization
for general 3D applications. The AUSM eanabled us to compute
flows with very strong shocks and strong expansions into leeside
flow regions, which were impossible with flux difference
splitting,.
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